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Lattice glass model with no tendency to crystallize
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We study a lattice model with two-body interactions that reproduces in three dimensions many features of
structural glasses, such as cage effect and vanishing diffusivity. While having a crystalline state at low tem-
peratures, it does not crystallize when quenched, even at the slowest cooling rate used, which makes it suitable
to study the glass transition. We study the model on the Bethe lattice as well, and find a scenario typical of
p-spin models, as in the Biroli-Mmard model.
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The glass transition is a phenomenon that is observed
when a liquid is cooled well below its melting temperature, H=2, ninjdyj(oi,00)— > N, (1)
avoiding the crystallization of the systefh,2]. The motion {5 :

of the molecules is slowed down more and more by lowering, ;o e =0 1 represents whether thth cell is occupied by
the temperature, until at some point it becomes so slow th L _ ; .
the liquid appears as a disordered solid, with the moIecuI:é particle or note;=1,...4 represents the internal position

vibrating around some equilibrium positions, but not diffus- of the particle, andp;;(a;,0;) is the interaction energy be-
ing anymore. Two fundamental approaches have been pLT]\fveen two particles in cellsandj with internal positionsy;
forward in the study of this phenomenon, from the point of""nd gj- ) o
view of dynamics[3] and thermodynamic§4]. A further I.t is clear tha'\t', by choosing a sufﬁmently large .nquer'
insight into the understanding of the glass transition wa®f internal positions, and an opportune interaction maitrix
achieved through the study of tigespin glasg5], a mean  ¢ij(ci,0j), one can approximate as closely as desired any
field model withp-body interactions and quenched disorder,model defined in the continuum, for example, a Lennard-
which reproduces many features of glass forming liquidsJones liquid. On the other hand, it is plausible that a few
More recently, Biroli and Meard have introduced a very number of internal states may be enough to catch the funda-
interesting lattice glass mod@b], where occupation vari- mental characteristics of dynamics and thermodynamics of
ables interact vig-body potentials. The mean field solution glass forming liquids.
on the Bethe lattice shows a scenario identicalpispin Here, we study a particularly simple realization of model
models, and three-dimensional numerical simulations show @1). In two dimensions, we partition the space in square cells,
behavior typical of glass forming liquids. In order to reduceand subdivide each cell into four internal positions. When a
the tendency to crystallize, the authors considered a mixtureell is occupied by a particle in a given position, a hard-core
of two types of particles. Further study of the model wasrepulsion forbids the presence of another particle in some of
done in Ref[7]. Another model withp-body interactions and the internal positions of the neighboring cellee Fig. L
without quenched disorder, which shows a similar behaviorTherefore in this case=4, and the interactiom;; (o , o) is
was studied in Ref8]. zero if the positionso; and o are “compatible,” infinite

In this paper, we study a simple lattice gas model withotherwise. The extension to three dimensions is straightfor-
only two-body interactions. The model reproduces in meanyard. In that case one partitions the space in cubic cells, and
field again the scenario typical @fspin models, and three-

dimensional numerical simulations show the same behavior

. . S . . O ® O
typical of glass forming liquids, including cage effect and
two-step relaxation. Moreover, while having a crystalline °© o|/e €0 O
phase at low temperatures, the model does not crystallize O ® o
when cooled, even in the pure ca@mly one type of par- o % o
ticles) and at extremely low cooling rates. This makes the o ole ole o
model more suitable to study the glass transition, and allows o ° o
to obtain very clear results.

The model is defined as follows. We partition the space in o ® &
regular cells, such that not more than one particle can have o) o e 0|0 0
its center of mass inside the cell. The position and orientation 0O 0O o

of the particle inside the cell are represented by a coarse
grained discrete internal degree of freedom, which can as- FiG. 1. The model in two dimensions: the space is partitioned in
sume a finite numbeg of states, and the interaction between square cells, and each cell can be occupied by at most one particle
nearest neighbor particles depends explicitly on their posiin one of four positionglittle circles). A particle in a given position

tion inside the cell. The model is therefore described by thebig shaded circleforbids the presence of another particle in the
following Hamiltonian: positions colored in black.
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> temperature, and heating up slow(giamonds in Fig. 2
This ordered state becomes unstablelrat0.15Qu, where
the system falls into the liquid phase.

After having equilibrated the system at a certain density
in the liquid phase, we have switched to a canonifiaed
density dynamics. These simulations are performed on lat-
tices of size 18 The mean square displacemént(t)) of
the particles is show in Fig.(8). This is defined taking into
account also the position of the particle inside the cell, giving
to each internal position a shift of a lattice spacing with
respect to the center of the cell. In FighBinstead we plot
the self-overlap, defined as

1.25

: 1
oo Tk (@0)= 5 = (MONO0() 0i(0), @

FIG. 2. Specific volumdinverse densityas a function of the
temperature, for a three-dimensional system of siZe @8cles: the whereg;(t) are unit length vectors, pointing in one of the six
system is cooled starting from high temperature, for cooling rategoordinate directions, representing the position of the par-
(from top to bottom T/T=-10"% —107° —10'. Diamonds: fticle inside the cell, and\ is the number of particles. As it
the system is heated starting from the crystalline ground state, withappens in glass forming liquids, at high densitplateau
heating rateT/T=10"". develops both in the mean square displacement and in the

self-overlap. This is the signature of the so called “cage ef-

considers six internal positions instead of four. For everyfect.” Particles are trapped in cages formed by neighboring
spatial dimensioml, the model has a crystalline ground stateparticles, and vibrate rapidly around some equilibrium posi-
with density 2/(2d+ 1), on lattices with sides multiples of tion, giving rise to the first decay in correlation functions.
2d+1 lattice spacings. For example, on a cubic lattice withOnly after a long time they manage to escape from their
periodic boundary conditions it can be found as follows.cages, giving rise to the second final decay to equilibrium.
Consider the cell with coordinates,f/,z), and evaluate the While the time of the first step remains finite, the time of the
number a=(x+2y+3zmod7): if a=0, leave the cell slow relaxation diverges when the glass transition is ap-
empty; if a=1,2,3 put a particle in the negative y, or z  proached. Figure(4) shows the diffusivity as a function of
direction, respectively; ia=4,5,6 put a particle in the posi- p—p., with p.=0.844. It can be fitted by a power law, with
tive z, y, or x direction, respectively. an exponenty=3.45. Figure 4b) shows the dynamical sus-

We have simulated the model in three dimensions, byeptibility x(t)=N[(q(t)%)—(q(t))?], which shows a be-
means of grand-canonical and canonical dynamics. A comhavior typical of p-spin models, and observed also in a
pression experiment on a system of sizé B8shown in Fig.  Lennard-Jones binary mixtufé], with a peak at finite time
2. A simple Monte Carlo grand-canonicalariable density  that grows when approaching the glass transition, signaling
dynamics is performed, and temperature is slowly decreaseghe presence of dynamical heterogeneities.
starting from some high value. The results are shown as open We have then studied the model on the Bethe lattice,
circles in Fig. 2, for various cooling rates. The final high- namely a random lattice with fixed connectiviig,12,13.
density state is strongly dependent on the cooling rate, asach site of the lattice is subdivided inte- 1 internal posi-
observed in glass forming liquids. On the other hand, naions, and is connected to+ 1 randomly chosen neighbors
tendency to crystallization is observed: even at the slowegkee Fig. %a)]. For large number of sitebl, the lattice is
cooling rate /T=—-10"") no transition to the crystalline locally treelike, but has loops of length of the order oNIn
state was observed. We have also computed the density in tfensider a “branch” ending on sitg that is, a graph in
crystalline state, starting from the ground state at very lowwhich sitei has onlyk neighbors, and Iz’ , z{),, andz{!

exts int
A A
= 107 ot
NL To8k )
v 10 / \% 07k FIG. 3. (a) Mean square dis-
1 o5 placement(r?(r)) and (b) self-
_ ) overlap (q(t)) as a function of
10 051 time, in a three-dimensional sys-
10 ] 0.4 ¢ tem of size 18, for densitiesp
0L 7 03¢ =0.55, 0.6, 0.65, 0.7, 0.75, 0.76,
; s 4 0.2 ¢ 0.78, 0.8, 0.81, 0.815, 0.818,
1°_ of 0.821.
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- St FIG. 4. (a) Diffusivity D as a
10 function of p.—p, with critical
. 3 density p,=0.844. The fitting
10 ¢ 5F function is a power lanD=a|p
" 4v —pcl?, with y=3.45. (b) Dy-
0 F 3E namical susceptibilityy(t) as a
5oL 2k function of time, for densitiep
1 £ =0.76, 0.78, 0.8, 0.818.
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be the partition functions of the branch, restricted, respec- o k+1 k+1
tively, to configurations where siteis empty, occupied on e PPV (a+efay+efr Y I (1+efM), (49
the “external” position, and occupied on one of tkéinter- =1 p=1ij#p
nal” positions[see Fig. )]. We define the “local fields’a;
. o . 3o —BAF(®) _ hy+h
and h; acting on the sité by the relationse?M=2z{)/z{) e AP =1+ el efttefhtha), (4b)

eﬁai:(ZthJr Zi(rg)/ZS)' The branch can be seen as the result The replica symmetric solution of the problem corre-
of the merging of thé branches ending on the neighbor sitesg 45 15 the case in which there is only one pure state, and
j=1,...k, which leads to recursion relations for the local y¢ fields do not fluctuate from site to site. In this case, the
fields, and a free energy shift: total free energy is given by =AF®—(k+1)AF®?)2,

from which one can find the specific volume and the entropy

K 14eBh K 1 per site, which are shown as solid lines in Figs. 6 anéh7
pai—ebu| [ —— i i i iroli
erfi=e L 15 1+]Zl 1167/ (38 the cas&k=5). As it happens in the model studied by Biroli

and Meard[6], the entropy becomes negative for tempera-
tures below some threshold. A similar behavior is observed

K 14e8)\ (X 1 for everyk>1. One can also find @eplica symmetrigcrys-
sh . ] .
efi—ers| [] B > T B | (3b)  talline solution, where the fields do not fluctuate on the
j=1 ersl =1 1+e J . . . . .
single site, but are different on different sites, and the merg-
ing of the branches is done preserving the crystalline struc-
_ kK ture. Fork=5, this solution appears beloW,,.=0.1633,
e AAF=z7{) _Hl zy)= Hl (1+eP%), (30 and becomes stable below the melting temperaftye
1= 1=

=0.1444.. The corresponding volume and entropy are
shown as dashed lines in Figs. 6 and 7.
To evaluate the total free energy, one has to consider also the We have then looked for a solution at the level of one-step
free energy shifts when merging+ 1 branches on a new replica symmetry breakindRSB) [10-13. In this case,
site, and when merging two branches are given, respectivelynany pure states exist, and the local fields fluctuate also on

by

>

1.25

a

FIG. 5. (@) The model on the Bethe lattidgnere withk=3):
each site is subdivided into+ 1 positions(little circles), and con-
nected tok+1 randomly chosen neighbors. A particle in a given  FIG. 6. Specific volumdinverse densityas a function of the
position (big shaded circleforbids the presence of another particle temperature, on the Bethe lattice wkh-5. Solid line replica sym-
in the positions colored in blackb) Merging of the brancheg metric liquid phase: broken line, crystalline phase; open circles,
=1,...k onto the sitd: the “external” positions are those colored in glassy phase in the one-step RSB approximation. Arrows mark the
black, the others are the “internal” ones. various temperatures cited in the text.
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FIG. 7. The same as in Fig. 6, but for the entropy per site. Inset
parametem as a function of the temperature. The line is a guide for
the eye.

the single site. We work in the so called “factorized case,” in
which the probability distribution of the local field¥a; ,h;)

on the single site is the same on all the sites of the lattic
The self-consistency equation, when mergknlgranches on
a sitei, now reads

k
P(a,h)ocf J_1;[1 da;dh;P(a; ,h))
X &(a—a;) s(h—h;)exp(— BmAF), (5)

wherea;, h;, andAF are functions of; andh; via Egs.(3),
m s a real parameter, and the total free energy is

1 k+1 B o
Fz—%||nfjl'[1 dajdh;P(a;,h;)e FMAF
—Tlnf Jf:[lolajolhjp(aj,hj)e FMAFT(6)

One then has to maximize the free energy with respect to th
parametem, in the interval G=m=1.

At temperatureT=0 the solution of Eq.(5) is easily
found. Indeed, in that case the fieldsandh; can only have
the finite set of values

€
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a=(1-ku,...,0u,
a if a<pu

hi={ (7)
Ou if aj=p

The distributionP(a,h) is then a sum ok+2 & functions,

and the integral equatiofb) gives rise tok+2 algebraic
equations for the weights of th&functions. One has to give

a finite value to the paramet@mu, and maximize the free
energy with respect to it. Fok=5, the maximum is
F=—0.8265, for Bmu=28.078. At temperaturd >0 the
solution of Eq.(5) can be found iteratively. We discretized
the distributionP(a,h) over a domain of the plan&, h),
using a fine grid with spacingsga=dh= «/1024, and start-
ing from some initial distribution applied iteratively E¢p)

until the procedure converged. Of course one must be careful
that the chosen domain in the plafe h) covers all the
support of P(a,h). To locate the maximum of the free en-
ergy as a function oi, it is useful to evaluate explicitly the
derivativedF/dm [12]. The results for the volume and en-
tropy, and for the parameten, are shown as open circles in
Figs. 6 and 7, in the cade=5. The one-step RSB solution
appears belowl=0.105«, and becomes stable beloli
=0.087u, wherem=1. Note that belowT ¢ the configura-
tional entropy vanishes, and therefore the residual entropy, at
low temperatures in the one-step RSB solution, has to be
interpreted as a “vibrational entropy,” due to the “rattling”

of the particles inside their cages. This vibrational entropy is
absent in the crystalline state.

In conclusion, we have studied a lattice glass model with
two-body interactions. On the Bethe lattice, it shows the
same scenario of discontinuous spin glasses, and of other
recently studied lattice models of glass. Moreover, it shows
no tendency to crystallize when simulated in three dimen-
sions with a simple Monte Carlo dynamics, which avoids the
need to introduce a mixture, as in many models of glass.

Note added Recently we learned about the work of
Weight and Hartmann, who have studied a lattice glass

renodel that shows a similar behavidr4].
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