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Lattice glass model with no tendency to crystallize
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We study a lattice model with two-body interactions that reproduces in three dimensions many features of
structural glasses, such as cage effect and vanishing diffusivity. While having a crystalline state at low tem-
peratures, it does not crystallize when quenched, even at the slowest cooling rate used, which makes it suitable
to study the glass transition. We study the model on the Bethe lattice as well, and find a scenario typical of
p-spin models, as in the Biroli-Me´zard model.
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The glass transition is a phenomenon that is obser
when a liquid is cooled well below its melting temperatu
avoiding the crystallization of the system@1,2#. The motion
of the molecules is slowed down more and more by lower
the temperature, until at some point it becomes so slow
the liquid appears as a disordered solid, with the molecu
vibrating around some equilibrium positions, but not diffu
ing anymore. Two fundamental approaches have been
forward in the study of this phenomenon, from the point
view of dynamics@3# and thermodynamics@4#. A further
insight into the understanding of the glass transition w
achieved through the study of thep-spin glass@5#, a mean
field model withp-body interactions and quenched disord
which reproduces many features of glass forming liqui
More recently, Biroli and Me´zard have introduced a ver
interesting lattice glass model@6#, where occupation vari-
ables interact viap-body potentials. The mean field solutio
on the Bethe lattice shows a scenario identical top-spin
models, and three-dimensional numerical simulations sho
behavior typical of glass forming liquids. In order to redu
the tendency to crystallize, the authors considered a mix
of two types of particles. Further study of the model w
done in Ref.@7#. Another model withp-body interactions and
without quenched disorder, which shows a similar behav
was studied in Ref.@8#.

In this paper, we study a simple lattice gas model w
only two-body interactions. The model reproduces in me
field again the scenario typical ofp-spin models, and three
dimensional numerical simulations show the same beha
typical of glass forming liquids, including cage effect an
two-step relaxation. Moreover, while having a crystalli
phase at low temperatures, the model does not crysta
when cooled, even in the pure case~only one type of par-
ticles! and at extremely low cooling rates. This makes t
model more suitable to study the glass transition, and allo
to obtain very clear results.

The model is defined as follows. We partition the space
regular cells, such that not more than one particle can h
its center of mass inside the cell. The position and orienta
of the particle inside the cell are represented by a coa
grained discrete internal degree of freedom, which can
sume a finite numberq of states, and the interaction betwe
nearest neighbor particles depends explicitly on their p
tion inside the cell. The model is therefore described by
following Hamiltonian:
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i

ni , ~1!

whereni50,1 represents whether thei th cell is occupied by
a particle or not,s i51,...,q represents the internal positio
of the particle, andf i j (s i ,s j ) is the interaction energy be
tween two particles in cellsi and j with internal positionss i
ands j .

It is clear that, by choosing a sufficiently large numberq
of internal positions, and an opportune interaction mat
f i j (s i ,s j ), one can approximate as closely as desired
model defined in the continuum, for example, a Lenna
Jones liquid. On the other hand, it is plausible that a f
number of internal states may be enough to catch the fun
mental characteristics of dynamics and thermodynamics
glass forming liquids.

Here, we study a particularly simple realization of mod
~1!. In two dimensions, we partition the space in square ce
and subdivide each cell into four internal positions. When
cell is occupied by a particle in a given position, a hard-co
repulsion forbids the presence of another particle in some
the internal positions of the neighboring cells~see Fig. 1!.
Therefore in this caseq54, and the interactionf i j (s i ,s j ) is
zero if the positionss i and s j are ‘‘compatible,’’ infinite
otherwise. The extension to three dimensions is straight
ward. In that case one partitions the space in cubic cells,

FIG. 1. The model in two dimensions: the space is partitioned
square cells, and each cell can be occupied by at most one pa
in one of four positions~little circles!. A particle in a given position
~big shaded circle! forbids the presence of another particle in t
positions colored in black.
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considers six internal positions instead of four. For ev
spatial dimensiond, the model has a crystalline ground sta
with density 2d/(2d11), on lattices with sides multiples o
2d11 lattice spacings. For example, on a cubic lattice w
periodic boundary conditions it can be found as follow
Consider the cell with coordinates (x,y,z), and evaluate the
number a5(x12y13z mod 7): if a50, leave the cell
empty; if a51,2,3 put a particle in the negativex, y, or z
direction, respectively; ifa54,5,6 put a particle in the posi
tive z, y, or x direction, respectively.

We have simulated the model in three dimensions,
means of grand-canonical and canonical dynamics. A c
pression experiment on a system of size 283 is shown in Fig.
2. A simple Monte Carlo grand-canonical~variable density!
dynamics is performed, and temperature is slowly decrea
starting from some high value. The results are shown as o
circles in Fig. 2, for various cooling rates. The final hig
density state is strongly dependent on the cooling rate
observed in glass forming liquids. On the other hand,
tendency to crystallization is observed: even at the slow
cooling rate (Ṫ/T521027) no transition to the crystalline
state was observed. We have also computed the density i
crystalline state, starting from the ground state at very l

FIG. 2. Specific volume~inverse density! as a function of the
temperature, for a three-dimensional system of size 283. Circles: the
system is cooled starting from high temperature, for cooling ra

~from top to bottom! Ṫ/T521024, 21025, 21027. Diamonds:
the system is heated starting from the crystalline ground state,

heating rateṪ/T51027.
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temperature, and heating up slowly~diamonds in Fig. 2!.
This ordered state becomes unstable atT.0.150m, where
the system falls into the liquid phase.

After having equilibrated the system at a certain dens
in the liquid phase, we have switched to a canonical~fixed
density! dynamics. These simulations are performed on
tices of size 153. The mean square displacement^r 2(t)& of
the particles is show in Fig. 3~a!. This is defined taking into
account also the position of the particle inside the cell, giv
to each internal position a shift14 of a lattice spacing with
respect to the center of the cell. In Fig. 3~b! instead we plot
the self-overlap, defined as

^q~ t !&5
1

N (
i

^ni~ t !ni~0!si~ t !•si~0!&, ~2!

wheresi(t) are unit length vectors, pointing in one of the s
coordinate directions, representing the position of the p
ticle inside the cell, andN is the number of particles. As i
happens in glass forming liquids, at high density aplateau
develops both in the mean square displacement and in
self-overlap. This is the signature of the so called ‘‘cage
fect.’’ Particles are trapped in cages formed by neighbor
particles, and vibrate rapidly around some equilibrium po
tion, giving rise to the first decay in correlation function
Only after a long time they manage to escape from th
cages, giving rise to the second final decay to equilibriu
While the time of the first step remains finite, the time of t
slow relaxation diverges when the glass transition is
proached. Figure 4~a! shows the diffusivity as a function o
r2rc , with rc50.844. It can be fitted by a power law, wit
an exponentg53.45. Figure 4~b! shows the dynamical sus
ceptibility x(t)5N@^q(t)2&2^q(t)&2#, which shows a be-
havior typical of p-spin models, and observed also in
Lennard-Jones binary mixture@9#, with a peak at finite time
that grows when approaching the glass transition, signa
the presence of dynamical heterogeneities.

We have then studied the model on the Bethe latti
namely a random lattice with fixed connectivity@6,12,13#.
Each site of the lattice is subdivided intok11 internal posi-
tions, and is connected tok11 randomly chosen neighbor
@see Fig. 5~a!#. For large number of sitesN, the lattice is
locally treelike, but has loops of length of the order of lnN.
Consider a ‘‘branch’’ ending on sitei, that is, a graph in
which sitei has onlyk neighbors, and letZ0

( i ) , Zext
( i ) , andZint

( i )

s

th
-

,
,

FIG. 3. ~a! Mean square dis-
placement^r 2(r )& and ~b! self-
overlap ^q(t)& as a function of
time, in a three-dimensional sys
tem of size 153, for densitiesr
50.55, 0.6, 0.65, 0.7, 0.75, 0.76
0.78, 0.8, 0.81, 0.815, 0.818
0.821.
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FIG. 4. ~a! Diffusivity D as a
function of rc2r, with critical
density rc50.844. The fitting
function is a power lawD5aur
2rcug, with g53.45. ~b! Dy-
namical susceptibilityx(t) as a
function of time, for densitiesr
50.76, 0.78, 0.8, 0.818.
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be the partition functions of the branch, restricted, resp
tively, to configurations where sitei is empty, occupied on
the ‘‘external’’ position, and occupied on one of thek ‘‘inter-
nal’’ positions@see Fig. 5~b!#. We define the ‘‘local fields’’ai

and hi acting on the sitei by the relationsebhi5Zint
( i )/Z0

( i ) ,
ebai5(Zext

( i )1Zint
( i ))/Z0

( i ) . The branch can be seen as the res
of the merging of thek branches ending on the neighbor sit
j 51,...,k, which leads to recursion relations for the loc
fields, and a free energy shift:

ebai5ebmS )
j 51

k
11ebhj

11ebaj D S 11(
j 51

k
1

11ebhj D , ~3a!

ebhi5emmS )
j 51

k
11ebhj

ebaj D S (
j 51

k
1

11ebhj D , ~3b!

e2bDF5Z0
~ i !Y )

j 51

k

Z0
~ j !5)

j 51

k

~11ebaj !. ~3c!

To evaluate the total free energy, one has to consider also
free energy shifts when mergingk11 branches on a new
site, and when merging two branches are given, respectiv
by

FIG. 5. ~a! The model on the Bethe lattice~here withk53):
each site is subdivided intok11 positions~little circles!, and con-
nected tok11 randomly chosen neighbors. A particle in a giv
position~big shaded circle! forbids the presence of another partic
in the positions colored in black.~b! Merging of the branchesj
51,...,k onto the sitei: the ‘‘external’’ positions are those colored i
black, the others are the ‘‘internal’’ ones.
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e2bDF~1!
5)

j 51

k11

~11ebaj !1ebm (
p51

k11

)
j Þp

~11ebhj !, ~4a!

e2bDF~2!
511eba11eba21eb~h11h2!. ~4b!

The replica symmetric solution of the problem corr
sponds to the case in which there is only one pure state,
the fields do not fluctuate from site to site. In this case,
total free energy is given byF5DF (1)2(k11)DF (2)/2,
from which one can find the specific volume and the entro
per site, which are shown as solid lines in Figs. 6 and 7~in
the casek55). As it happens in the model studied by Biro
and Mézard @6#, the entropy becomes negative for tempe
tures below some threshold. A similar behavior is observ
for everyk.1. One can also find a~replica symmetric! crys-
talline solution, where the fields do not fluctuate on t
single site, but are different on different sites, and the me
ing of the branches is done preserving the crystalline str
ture. Fork55, this solution appears belowTms50.1633m,
and becomes stable below the melting temperatureTm
50.1444m. The corresponding volume and entropy a
shown as dashed lines in Figs. 6 and 7.

We have then looked for a solution at the level of one-s
replica symmetry breaking~RSB! @10–13#. In this case,
many pure states exist, and the local fields fluctuate also

FIG. 6. Specific volume~inverse density! as a function of the
temperature, on the Bethe lattice withk55. Solid line replica sym-
metric liquid phase: broken line, crystalline phase; open circ
glassy phase in the one-step RSB approximation. Arrows mark
various temperatures cited in the text.
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the single site. We work in the so called ‘‘factorized case,’’
which the probability distribution of the local fieldsP(ai ,hi)
on the single site is the same on all the sites of the latt
The self-consistency equation, when mergingk branches on
a sitei, now reads

P~a,h!}E )
j 51

k

dajdhj P~aj ,hj !

3d~a2ai !d~h2hi !exp~2bmDF !, ~5!

whereai , hi , andDF are functions ofaj andhj via Eqs.~3!,
m is a real parameter, and the total free energy is

F52
1

bm H ln E )
j 51

k11

dajdhj P~aj ,hj !e
2bmDF~1!

2
k11

2
lnE )

j 51

2

dajdhj P~aj ,hj !e
2bmDF~2!J . ~6!

One then has to maximize the free energy with respect to
parameterm, in the interval 0<m<1.

At temperatureT50 the solution of Eq.~5! is easily
found. Indeed, in that case the fieldsai andhi can only have
the finite set of values

FIG. 7. The same as in Fig. 6, but for the entropy per site. In
parameterm as a function of the temperature. The line is a guide
the eye.
.
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ai5~12k!m,...,0,m,

hi5H ai if ai,m

0,m if ai5m
. ~7!

The distributionP(a,h) is then a sum ofk12 d functions,
and the integral equation~5! gives rise tok12 algebraic
equations for the weights of thed functions. One has to give
a finite value to the parameterbmm, and maximize the free
energy with respect to it. Fork55, the maximum is
F520.8265m, for bmm58.078. At temperatureT.0 the
solution of Eq.~5! can be found iteratively. We discretize
the distributionP(a,h) over a domain of the plane~a, h!,
using a fine grid with spacingsda5dh5m/1024, and start-
ing from some initial distribution applied iteratively Eq.~5!
until the procedure converged. Of course one must be car
that the chosen domain in the plane~a, h! covers all the
support ofP(a,h). To locate the maximum of the free en
ergy as a function ofm, it is useful to evaluate explicitly the
derivativedF/dm @12#. The results for the volume and en
tropy, and for the parameterm, are shown as open circles i
Figs. 6 and 7, in the casek55. The one-step RSB solutio
appears belowTD.0.105m, and becomes stable belowTK
.0.087m, wherem51. Note that belowTK the configura-
tional entropy vanishes, and therefore the residual entrop
low temperatures in the one-step RSB solution, has to
interpreted as a ‘‘vibrational entropy,’’ due to the ‘‘rattling
of the particles inside their cages. This vibrational entropy
absent in the crystalline state.

In conclusion, we have studied a lattice glass model w
two-body interactions. On the Bethe lattice, it shows t
same scenario of discontinuous spin glasses, and of o
recently studied lattice models of glass. Moreover, it sho
no tendency to crystallize when simulated in three dim
sions with a simple Monte Carlo dynamics, which avoids t
need to introduce a mixture, as in many models of glass

Note added. Recently we learned about the work o
Weight and Hartmann, who have studied a lattice gl
model that shows a similar behavior@14#.
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